Abstract

For the realization of an optical nuclear clock, the first isomeric excited state of thorium-229 (229mTh) is currently the only candidate due to its exceptionally low-lying excitation energy (8.338±0.024 eV). Such a nuclear clock holds promise not only to be a very precise metrological device but also to extend the knowledge of fundamental physics studies, such as dark matter research or variations in fundamental constants. Considerable progress was achieved in recent years in characterizing 229mTh from its first direct identification in 2016 to the only recent observation of the long-sought-after radiative decay channel. So far, nuclear resonance as the crucial parameter of a nuclear frequency standard has not yet been determined with laser-spectroscopic precision. To determine another yet unknown basic property of the thorium isomer and to further specify the linewidth of its ground-state transition, a measurement of the ionic lifetime of the isomer is in preparation. Theory and experimental investigations predict the lifetime to be 103–104 s. To precisely target this property using hyperfine structure spectroscopy, an experimental setup is currently being commissioned at LMU Munich. It is based on a cryogenic Paul trap providing long-enough storage times for 229mTh ions, that will be sympathetically cooled with 88Sr+. This article presents a concept for an ionic lifetime measurement and discusses the laser-optical part of a setup specifically developed for this purpose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.