Abstract

Particle size distribution and size-specific settling velocity are critical parameters for understanding the transport of fine sediment on continental margins. In this study, observed floc size versus settling velocity, volume distributions of particles 2 μm–1 cm in diameter, and calculated effective densities for all particle sizes provided estimates of the mass distribution in suspension, which is used to apportion mass among component particles, microflocs, and macroflocs. Measurements were made during relatively quiescent environmental conditions. Observations of size distributions based on mass demonstrate an increase in the component particle fraction through time. The increase in the percentage of component particles in suspension had implications on water column properties, as small changes in the component particle fraction affected water column optical transmission in a way that was not as easily detected by changes in the volume concentration distribution or total mass concentration. Flocs larger than 133 μm in diameter only comprised one quarter to one third of the mass in suspension. This finding may explain why suspension bulk clearance rates are often an order of magnitude lower than those predicted by other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.