Abstract

This paper studies the problem of recovering the hidden vertex correspondence between two edge-correlated random graphs. We focus on the Gaussian model where the two graphs are complete graphs with correlated Gaussian weights and the Erdős-Rényi model where the two graphs are subsampled from a common parent Erdős-Rényi graph <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\mathcal {G}}(n,p)$ </tex-math></inline-formula> . For dense Erdős-Rényi graphs with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$p=n^{-o(1)}$ </tex-math></inline-formula> , we prove that there exists a sharp threshold, above which one can correctly match all but a vanishing fraction of vertices and below which correctly matching any positive fraction is impossible, a phenomenon known as the “all-or-nothing” phase transition. Even more strikingly, in the Gaussian setting, above the threshold all vertices can be exactly matched with high probability. In contrast, for sparse Erdős-Rényi graphs with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$p=n^{-\Theta (1)}$ </tex-math></inline-formula> , we show that the all-or-nothing phenomenon no longer holds and we determine the thresholds up to a constant factor. Along the way, we also derive the sharp threshold for exact recovery, sharpening the existing results in Erdős-Rényi graphs. The proof of the negative results builds upon a tight characterization of the mutual information based on the truncated second-moment computation and an “area theorem” that relates the mutual information to the integral of the reconstruction error. The positive results follows from a tight analysis of the maximum likelihood estimator that takes into account the cycle structure of the induced permutation on the edges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.