Abstract
The way a rigid cylindrical particle falls through a viscous Newtonian liquid into a loosely packed granular bed of smaller and lighter particles has been studied numerically. This solid-liquid flow system has been solved with the lattice-Boltzmann method combined with an immersed boundary method for explicitly imposing no-slip at the particle surfaces. We study the effect of the orientation of the cylinder (vertical and horizontal), its settling speed (the Reynolds numbers at impact is of the order of 100), and its density (relative to liquid and bed density) on the depth of penetration into the granular bed. The simulation results are particularly sensitive to the friction between particles as parameterized through friction coefficients (varied in the range 0.15 – 0.50). The results have practical relevance for particles getting immobilized – or even buried – in granular beds. More importantly, the simulation cases have been designed such as to allow for straightforward experimentation the results of which would be valuable for further numerical model development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.