Abstract
Solar energy is one of the most potential renewable energy sources to solve energy and environmental crises. Dust deposition on the photovoltaic mirrors greatly decreases the working performance of the mirror and the efficiency of photovoltaic power generation. In this paper, the particle settlement–adhesion evolution mechanism in the flow field of photovoltaic mirrors at night is studied using the computational fluid dynamics-discrete element method. In addition, the effects of air inlet velocity, air relative humidity, particle size and mirror installation inclination on particle settlement–adhesion laws are discussed. The research results show that in the free/nonfree settlement–adhesion motion process, due to the great effect of the relative humidity of air, dust particles can settle and adhere to the photovoltaic mirror by the leading role of the particle gravity force and liquid bridge force, respectively. Dust particles can leave from the flow field of the photovoltaic mirror due to the great effects of the particle collision force and drag force. Decreasing the particle settling velocity or dust deposition density can reduce the dust deposition degree on the photovoltaic mirrors. The research results can provide important theoretical guidance for the removal of dust particles from photovoltaic mirrors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.