Abstract

The clinical pathology of neurodegenerative diseases suggests that earlier onset and progression are related to the accumulation of protein aggregates due to misfolding. A prominent way to extract useful information regarding single-molecule studies of protein misfolding at the nanoscale is by capturing the unbinding molecular forces through forced mechanical tension generated and monitored by an atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS). This AFM-driven process results in an amount of data in the form of force versus molecular extension plots (force-distance curves), the statistical analysis of which can provide insights into the underlying energy landscape and assess a number of characteristic elastic and kinetic molecular parameters of the investigated sample. This chapter outlines the setup of a bio-AFM-based SMFS technique for single-molecule probing. The infrastructure used as a reference for this presentation is the Bruker ForceRobot300.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call