Abstract

In anomaly-free quantum field theories the integrand in the bosonic functional integral—the exponential of the effective action after integrating out fermions—is often defined only up to a phase without an additional choice. We term this choice ``setting the quantum integrand''. In the low-energy approximation to M-theory the E 8-model for the C-field allows us to set the quantum integrand using geometric index theory. We derive mathematical results of independent interest about pfaffians of Dirac operators in 8k+3 dimensions, both on closed manifolds and manifolds with boundary. These theorems are used to set the quantum integrand of M-theory for closed manifolds and for compact manifolds with either temporal (global) or spatial (local) boundary conditions. In particular, we show that M-theory makes sense on arbitrary 11-manifolds with spatial boundary, generalizing the construction of heterotic M-theory on cylinders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call