Abstract

Abstract CD4 T cell-intrinsic engagement of the complement receptor CD46 controls nutrient influx and the metabolic reprogramming events that are essential for both the initiation and contraction of human Th1 responses, characterized by IFN-g and IL-10 production respectively. Here, we demonstrate that CD46 also orchestrates T cell arginine metabolism by upregulating the arginine transporter CAT-1 and, unexpectedly, Arginase 1 (Arg1). Arg1 has been well characterized in macrophages where it is associated with the IL-10 secreting M2 type, but its expression or function in T cells has not been described. Surprisingly, in CD4 T cell, Arg1 seems to restrain IL-10 production and contraction: T cells isolated from four patients with rare Arg1 deficiency mount strong Th1 responses but display significantly increased IL-10 switching and early contraction when compared to healthy control cells. Similarly, Arg1fl/fl CD4-cre+ mice infected with influenza virus are characterized by an enhanced Th1 response that contracts more rapidly, resulting in viral control and significantly reduced lung pathology. Unexpectedly, both Arg1-deficient mouse and human T cells produce normal levels of nitric oxide (NO) and polyamines. Metabolic profiling rather revealed that T cells lacking Arg1 have enhanced glycolysis, reduced TCA-cycle intermediates, and engage an “alternative” glutamine pathway often utilized by cancer cells. Normalization of these metabolic perturbations, through the targeting of specific metabolic enzymes, restored typical Th1 induction/contraction. Overall, these data unveil an unexpected intrinsic role for Arginase 1 as a pacemaker of the Th1 lifecycle, which could be harnessed for the amelioration Th1-driven pathologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.