Abstract

Fast magic-angle spinning, coupled with 1H detection is a powerful method to improve spectral resolution and signal to noise in solid-state NMR spectra. Commercial probes now provide spinning frequencies in excess of 100 kHz. Then, one has sufficient resolution in the 1H dimension to directly detect protons, which have a gyromagnetic ratio approximately four times larger than 13C spins. However, the gains in sensitivity can quickly be lost if the rotation angle is not set precisely. The most common method of magic-angle calibration is to optimize the number of rotary echoes, or sideband intensity, observed on a sample of KBr. However, this typically uses relatively low spinning frequencies, where the spinning of fast-MAS probes is often unstable, and detection on the 13C channel, for which fast-MAS probes are typically not optimized. Therefore, we compare the KBr-based optimization of the magic angle with two alternative approaches: optimization of the splitting observed in 13C-labeled glycine-ethylester on the carbonyl due to the Cα–C′ J-coupling, or optimization of the H–N J-coupling spin echo in the protein sample itself. The latter method has the particular advantage that no separate sample is necessary for the magic-angle optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.