Abstract

In the last decade, surface mesh parameterization has emerged as a standard technique in computer graphics. The ever increasing need for processing large and highly detailed data sets fosters the development of efficient parameterization techniques that can capture the geometry of the input meshes and produce low distortion planar maps. We present a set of novel techniques allowing for low distortion parameterization. In particular, we address one of the major shortcomings of linear methods by allowing the parametric representation to evolve freely on the plane without any fixed boundary vertices. Our method consists of several simple steps, each solving a linear problem. Our results exhibit a fair balance between high-quality and computational efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.