Abstract

For pick-and-place processes to become widely implemented in industry a consistent and acceptable product quality needs to be achieved. In the state of the art it is assumed that reinforcements will be in perfect condition at the start of forming or draping. In reality the handling process can already result in undesired deformations. The current work will look at fiber angle deviations that occur during this process due to in-plane shear. It is shown that bounds can be set for these fiber angle deviations based on experimental work. Periodic representative volume element homogenization is used to obtain homogenized material properties for a bi-axial non-crimp fabric with a specific construction. With these material properties the in-plane shear strain, and thus the fiber angle deviations, can be predicted. The presented methodology and results obtained using it can be a basis in the design process for automated handling of reinforcements and for in-situ quality control of the pick-and-place process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call