Abstract

In this paper, we consider the row rank inequalities derived from comparisons of the row ranks of the additions and multiplications of nonnegative integer matrices and construct the sets of nonnegative integer matrix pairs which is occurred at the extreme cases for the row rank inequalities. We characterize the linear operators that preserve these extreme sets of nonnegative integer matrix pairs

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.