Abstract
The partition algebra is an associative algebra with a basis of set-partition diagrams and multiplication given by diagram concatenation. It contains as subalgebras a large class of diagram algebras including the Brauer, planar partition, rook monoid, rook-Brauer, Temperley-Lieb, Motzkin, planar rook monoid, and symmetric group algebras. We give a construction of the irreducible modules of these algebras in two isomorphic ways: first, as the span of symmetric diagrams on which the algebra acts by conjugation twisted with an irreducible symmetric group representation and, second, on a basis indexed by set-partition tableaux such that diagrams in the algebra act combinatorially on tableaux. The first representation is analogous to the Gelfand model and the second is a generalization of Young's natural representation of the symmetric group on standard tableaux. The methods of this paper work uniformly for the partition algebra and its diagram subalgebras. As an application, we express the characters of each of these algebras as nonnegative integer combinations of symmetric group characters whose coefficients count fixed points under conjugation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.