Abstract
The present paper deals with the learnability of indexed families of uniformly recursive languages from positive data under various postulates of naturalness. In particular, we consider set-driven and rearrangement-independent learners, i.e., learning devices whose output exclusively depends on the range and on the range and length of their input, respectively. The impact of set-drivenness and rearrangement-independence on the behavior of learners to their learning power is studied in dependence on the hypothesis space the learners may use. Furthermore, we consider the influence of set-drivenness and rearrangementindependence for learning devices that realize the subset principle to different extents. Thereby we distinguish between strong-monotonic, monotonic and weak-monotonic or conservative learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.