Abstract

MCT1 is a critical protein found in monocarboxylate transporters that plays a significant role in regulating the lactate shuttle. However, the post-transcriptional modifications that regulate MCT1 are not clearly identified. In this study, it is reported that SETDB1 interacts with MCT1, leading to its stabilization. These findings reveal a novel post-translational modification of MCT1, in which SETDB1 methylation occurs at K473 in vitro and in vivo. This methylation inhibits the interaction between MCT1 and Tollip, which blocks Tollip-mediated autophagic degradation of MCT1. Furthermore, MCT1 K473 tri-methylation promotes tumor glycolysis and M2-like polarization of tumor-associated macrophages in colorectal cancer (CRC), which enhances the lactate shuttle. In clinical studies, MCT1 K473 tri-methylation is found to be upregulated and positively correlated with tumor progression and overall survival in CRC. This discovery suggests that SETDB1-mediated tri-methylation at K473 is a vital regulatory mechanism for lactate shuttle and tumor progression. Additionally, MCT1 K473 methylation may be a potential prognostic biomarker and promising therapeutic target for CRC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.