Abstract
A regulatory mechanism for SLC family transporters, critical transporters for sodium and glucose reabsorptions in renal tubule, is incompletely understood. Here, we report an important regulation of SLC family transporter by SETD2, a chromatin remodeling gene whose alterations have been found in a subset of kidney cancers. Kidney-specific inactivation of Setd2 resulted in hypovolemia with excessive urine excretion in mouse and interestingly, RNA-sequencing analysis of Setd2-deficient murine kidney exhibited decreased expressions of SLC family transporters, critical transporters for sodium and glucose reabsorptions in renal tubule. Importantly, inactivation of Setd2 in murine kidney displayed attenuated dapagliflozin-induced diuresis and glucose excretion, further supporting that SETD2 might regulate SLCfamily transporter-mediated sodium and glucose reabsorptions in renal tubule. These data uncover an important regulation of SLC family transporter by SETD2, which may illuminate a crosstalk between metabolism and epigenome in renal tubule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.