Abstract

Histone methyltransferase SETD1A is critical for acute myeloid leukemia (AML) cell survival, but the molecular mechanism driving SETD1A gene regulation remains elusive. To delineate the role of SETD1A, we utilize a protein degrader technology to induce rapid SETD1A degradation in AML cell lines. SETD1A degradation results in immediate downregulation of transcripts associated with DNA repair and heme biosynthesis pathways. CRISPR-based functional analyses and metabolomics reveal an essential role of SETD1A to maintain mitochondrial respiration in AML cells. These SETD1A targets are enriched in head-to-head (H2H) genes. SETD1A degradation disrupts a non-enzymatic SETD1A domain-dependent cyclin K function, increases the Ser5P RNA polymerase II (RNAPII) at the transcriptional start site (TSS), and induces the promoter-proximal pausing of RNAPII in a strand-specific manner. This study reveals a non-enzymatic role for SETD1A in transcriptional pause release and provides insight into the mechanism of RNAPII pausing and its function in cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.