Abstract
Strong physical unclonable function (PUF) is a promising solution for device authentication in resource-constrained applications but vulnerable to machine learning (ML) attacks. In order to resist attack, many defenses have been proposed in recent years. However, these defenses incur high hardware overhead, degenerate reliability and are inefficient against advanced ML attacks such as approximation attacks. To address these issues, we propose a Random Set-based Obfuscation (RSO) for Strong PUFs to resist ML attacks. The basic idea is that several stable responses are derived from the PUF itself and pre-stored as the set for obfuscation in the testing phase, and then a true random number generator is used to select any two keys to obfuscate challenges and responses with XOR operations. When the number of challenge-response pairs (CRPs) collected by the attacker exceeds the given threshold, the set will be updated immediately. In this way, ML attacks can be prevented with extremely low hardware overhead. Experimental results show that for a 64 × 64 Arbiter PUF, when the size of set is 32 and even if 1 million CRPs are collected by attackers, the prediction accuracies of the several ML attacks we use are about 50% which is equivalent to the random guessing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.