Abstract

The paper presents a multiple task-priority inverse kinematics algorithm for a dual-arm aerial manipulator. Both tasks defined as equality constraints and inequality constraints are handled by means of a singularity robust method based on the Null-Space based Behavioral control. The proposed schema is constituted by the inverse kinematics control, that receives the desired behavior of the system and outputs the reference values for the motion variables, i.e. the UAV pose and the arm joints position, and a motion control, that computes the vehicle thrusts and the joint torques. The method has been experimentally validated on a system composed by an underactuated aerial hexarotor vehicle equipped with two lightweight 4-DOF manipulators, involved in operations requiring the coordination of the two arms and the vehicle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call