Abstract

In this paper, we consider a multiobjective optimal control problem where the preference relation in the objective space is defined in terms of a pointed convex cone containing the origin, which defines generalized Pareto optimality. For this problem, we introduce the set-valued return function $V$ and provide a unique characterization for $V$ in terms of contingent derivative and coderivative for set-valued maps, which extends two previously introduced notions of generalized solution to the Hamilton--Jacobi equation for single objective optimal control problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.