Abstract

This paper presents and analyzes novel data selective normalized adaptive filtering algorithms with two data reuses. The algorithms [the set-membership binormalized LMS (SM-BN-DRLMS) algorithms] are derived using the concept of set-membership filtering (SMF). These algorithms can be regarded as generalizations of the previously proposed set-membership NLMS (SM-NLMS) algorithm. They include two constraint sets in order to construct a space of feasible solutions for the coefficient updates. The algorithms include data-dependent step sizes that provide fast convergence and low-excess mean-squared error (MSE). Convergence analyzes in the mean squared sense are presented, and closed-form expressions are given for both white and colored input signals. Simulation results show good performance of the algorithms in terms of convergence speed, final misadjustment, and reduced computational complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.