Abstract

AbstractSingle electron transfer‐living radical polymerization (SET‐LRP) of methyl acrylate (MA) in methanol, catalyzed with nonactivated and activated Cu(0) wires, was performed in the presence of nondeoxygenated reagents and was investigated under a simple blanket of nitrogen. The addition of a small amount of hydrazine hydrate mediates the deoxygenation of the reaction mixture by the consumption of oxygen through its use to oxidize Cu(0) to Cu2O, followed by the reduction of Cu2O with hydrazine back to the active Cu(0) catalyst. SET‐LRP of MA in methanol in the presence of air requires a smaller dimension of Cu(0) wire, compared to the nonactivated Cu(0) wire counterpart. Activation of Cu(0) wire allowed the polymerization in air to proceed with no induction period, linear first‐order kinetics, linear correlation between the molecular weight evolution with conversion, and narrow molecular weight distribution. The retention of chain‐end functionality of α,ω‐di(bromo) poly(methyl acrylate) (PMA) prepared by SET‐LRP was demonstrated by a combination of experiments including 1H NMR spectroscopy and matrix‐assisted laser desorption ionization–time of flight mass spectrometry after thioetherification of α,ω‐di(bromo) PMA with thiophenol. In SET‐LRP of MA in the presence of limited air, bimolecular termination is observed only above 85% conversion. However, for bifunctional initiators, the small amount of bimolecular termination observed at high conversion maintains a perfectly bifunctional polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.