Abstract
This paper deals with set invariance for time delay systems. The first goal of the paper is to review the known necessary or sufficient conditions for the existence of invariant sets with respect to dynamical systems described by discrete-time delay difference equations (dDDEs). Secondly, we address the construction of invariant sets in the original state space (also called D-invariant sets) by exploiting the forward mappings. As novelties, the present paper contains a sufficient condition for the existence of ellipsoidal D-contractive sets for dDDEs, and a necessary and sufficient condition for the existence of Dinvariant sets in relation to time-varying dDDE stability. Another contribution is the clarification of the relationship between convexity (convex hull operation) and D-invariance. In short, tis shown that the convex hull of two D-invariant sets is not D-invariant but the convex hull of a non-convex D-invariant set is D-invariant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.