Abstract

Large-scale binder jetting provides a promising alternative to manual sculpting of sandstone. The weak build material, however, severely limits its use in architectural ornamentation. We propose a structural optimization that jointly optimizes an ornament's strength-to-weight ratio and balance under self-weight, thermal, wind, and live loads. To account for the difference in the tensile and compressive strength of the build material, we turn the Bresler-Pister criterion into a failure potential, measuring the distance to failure. Integrated into an XFEM-based level set formulation, we minimize this potential by changing the topology and shape of the internal structure. To deal with uncertainties in the location of live loads, and the direction of wind loads, we first estimate loads that lead to the weakest structure, then minimize the potential of failure under identified worst-case loads. With the help of first-order optimality constraints, we unify our worst-case load estimation and structural optimization into a continuous optimization. We demonstrate applications in art, furniture design, and architectural ornamentation with three large-scale 3D printed examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.