Abstract
SET domain-containing protein 5 (SETD5) could promote non-small cell lung cancer (NS-CLC) cell invasion, but the effect of SETD5 on NSCLC cell stemness characteristics is unknown. Thus we attempted to evaluate the effect of SETD5 on NSCLC stemness and its mechanism. The expressions of SETD5 and stemness-related genes (SOX2, OCT4, ABCG2) were detected in NSCLC tissues by immunohistochemistry assay, qRT-PCR, and western blot. A SETD5 knockdown cell model was constructed by siRNA transfection in A549 and H1299 cells. A CCK8 assay was used to examine cell viability. A sphere-forming assay and side population cell assay were conducted to measure the cancer cell stem properties. The cells with SETD5 deletion were treated with an activator of AKT, SC79, and the protein expressions of Akt, p-Akt, mTOR, and p-mTOR were assessed. SETD5 and cancer stem-related genes SOX2, OCT4, and ABCG2 were co-expressed and co-localized in tumor tissues and cell lines of NSCLC. The deletion of SETD5 significantly reduced the cell viability, cancer stem properties, and activity of the PI3K/Akt/mTOR pathway, while the decreased SETD5-induced effects were partially restored with SC79 treatment. In this study, SETD5 promoted the cancer stem cell property of NSCLC through mitigating the activation of the PI3K/Akt/mTOR pathway, suggesting a candidate target role for SETD5 in NSCLC treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Environmental Pathology, Toxicology and Oncology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.