Abstract

Bigelovin, a sesquiterpene lactone extracted from plant Inula helianthus aquatica, exhibited multiple interesting biological activities, including anti-inflammation, antiangiogenesis and cytotoxic action against cancer cells. In the present study, we found that Bigelovin reduced the viability of human colon cancer cells and induced their apoptosis in a time- and dose-dependent manner, with an IC50-5 μM. RNAseq and luciferase reporter analyses revealed that the nuclear factor kappa B (NF-κB) signaling was one of the most significantly inhibited pathways after Bigelovin treatment. Further systemic examination showed that exposure to Bigelovin resulted in ubiquitination and degradation of inhibitor of kappa-B kinase-beta (IKK-β) and decrease of IκB-α and p65 phosphorylation, which led to the downregulation of NF-κB-regulated genes expression. Moreover, enforced expression of exogenous IKK-β attenuated Bigelovin-induced NF-κB suppression and cell viability reduction. These results indicated that Bigelovin exerts a cytotoxic action against colon cancer cells through the induction of IKK-β degradation and consequently the inhibition of NF-κB signaling. Given the abnormal activation of NF-κB signaling in colorectal cancer (CRC) cells and the critical role of chronic inflammation in CRC development, it is conceivable that at least some colorectal cancer cells are addictive to NF-κB activation and targeting the pathway is an effective anti-CRC strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call