Abstract
We introduce the notion of a Seshadri stratification on an embedded projective variety. Such a structure enables us to construct a Newton-Okounkov simplicial complex and a flat degeneration of the projective variety into a union of toric varieties. We show that the Seshadri stratification provides a geometric setup for a standard monomial theory. In this framework, Lakshmibai-Seshadri paths for Schubert varieties get a geometric interpretation as successive vanishing orders of regular functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.