Abstract
In recent years, the interaction between the local positivity of divisors and Okounkov bodies has attracted considerable attention, and there have been attempts to find a satisfactory theory of positivity of divisors in terms of convex geometry of Okounkov bodies. Many interesting results in this direction have been established by Choi–Hyun–Park–Won [4] and Küronya–Lozovanu [17–19] separately. The first aim of this paper is to give uniform proofs of these results. Our approach provides not only a simple new outlook on the theory but also proofs for positive characteristic in the most important cases. Furthermore, we extend the theorems on Seshadri constants to graded linear series setting. Finally, we introduce the integrated volume function to investigate the relation between Seshadri constants and filtered Okounkov bodies introduced by Boucksom–Chen [3].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.