Abstract

Sesamin, a major phytochemical in sesame seeds and oil, has been reported to have effects on physiological and pathological angiogenesis in several studies. Nevertheless, the underlying mechanisms of sesamin's effect on angiogenesis are not understood well enough. This study aimed to investigate its effect on both physiological and pathological angiogenesis using the in vivo chick chorioallantoic membrane (CAM) model and the in vitro human endothelial cell line, EA.hy926, model. Sesamin inhibited the VEGFA-induced pathological angiogenesis significantly, although no effect was seen on angiogenesis without induction. It reduced the formation of vascular branches in the VEGFA-treated CAMs and also the proliferation and migration of EA.hy926 endothelial cells induced by VEGFA. Sesamin impeded the VEGF-mediated activation of Src and FAK signaling proteins, which may be responsible for sesamin-mediated reduction of pathological angiogenesis. Moreover, the effect of sesamin on the expressions of angiogenesis-related genes was then investigated and it was found that both mRNA and protein expressions of Notch1, the key pathway in vascular development, induced by VEGFA, were significantly reduced by sesamin. Our results altogether suggested that sesamin, by inhibiting pathological angiogenesis, has the potential to be employed in the prevention or treatment of diseases with over-angiogenesis, such as cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.