Abstract

Ethnopharmacological relevanceSesame (Sesamum indicum, L., Family: Pedaliaceae) is a notable folk medicine in Middle East, Asia and Africa. Many traditional and pharmacological studies have documented the unique nature of sesame oil (SO). SO has been reported to have many pharmacological effects related to the anti-inflammatory and antioxidant capacity of its components. Neuroinflammation and oxidative stress have been the predominant pathogenic events in Alzheimer's disease (AD) which is one of the most common neurodegenerative diseases. Aim of studywe aimed to explore the neuroprotective effect and the probable mechanisms of SO against aluminium chloride (AlCl3)-induced AD symptoms. Materials and methodsRats were treated daily with AlCl3 (100 mg/kg/i.p.) either alone or with SO (two different doses) for six weeks. Behavioral (Open-field and Morris water maze tests), histopathological, and biochemical examinations were used to evaluate the neuroprotective effect and the underlying mechanisms of SO against AlCl3-induced AD symptoms. ResultsOur results indicated that SO significantly improved learning and memory impairments induced by AlCl3. Indeed, SO treatment significantly restored the elevated level of acetylcholinesterase (AChE) and amyloid beta (Aβ) overexpression. Moreover, AlCl3 treatment afforded histopathological changes, increase the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in addition to mitigation of oxidative stress status in the brain. SO abolished all these abnormalities. Meanwhile, AlCl3 induced activation of p38 mitogen-activated protein kinase (p38MAPK) and decreased brain-derived neurotrophic factor (BDNF) which were inhibited by SO. Furthermore, SO administration modulated the expression of the peroxisome proliferator-activated receptor gamma (PPAR-γ) and nuclear factor kappa B (NF-κB). ConclusionsIn conclusion, the neuroprotective effect of SO involved the modulation of different mechanisms targeting oxidative stress, neuroinflammation, and cognitive functions. SO may modulate different molecular targets involved in AD pathogenesis by alterations of NF-κB/p38MAPK/BDNF/PPAR-γ signalling and this may be attributed to the synergistic effect of their active components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call