Abstract

The development of the 5G network is envisioned to offer various types of services like virtual reality/augmented reality and autonomous vehicles applications with low-latency requirements in Internet-of-Things (IoT) networks. Mobile-edge computing (MEC) has become a promising solution for enhancing the computation capacity of mobile devices at the edge of the network in a 5G wireless network. Additionally, multiple radio access technologies (multi-RATs) have been verified with the potential in lowering the transmission latency and energy consumption, while improving the Quality of Services (QoS). Benefiting from the cooperation of multi-RATs, large latency-sensitive computing service tasks (L2SC) can be offloaded by different RATs simultaneously, which has great practical significance for data partitioned oriented applications with large task sizes. In this article, to enhance the L2SC offloading services for satisfying low-latency requirements with low energy consumption, we investigate the energy-latency tradeoff problem for partial task offloading in the MEC-enhanced multi-RAT network, considering the limitation of energy and computing in capability-constrained end devices in IoT networks. Specifically, we formulated the L2SC task computation offloading problem to minimize the weighted sum of the latency cost and the energy consumption by jointly optimizing the local computing frequency, task splitting, and transmit power, while guaranteeing the stringent latency requirement and the residual energy constraint. Due to the nonsmoothness and nonconvexity of the formulated problem with high complexity, we convert the tradeoff problem into a smooth biconvex problem and propose an alternate convex search-based algorithm, which can greatly reduce the computational complexity. Numerical simulation results show the effectiveness of the proposed algorithm with various performance parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call