Abstract
Recently, increasing investments in satellite-related technologies make the low earth orbit (LEO) satellite constellation a strong complement to terrestrial networks. To mitigate the limitations of the traditional satellite constellation “bent-pipe” architecture, satellite edge computing (SEC) has been proposed by placing computing resources at the LEO satellite constellation. Most existing works focus on space-air-ground integrated network architecture and SEC computing framework. Beyond these works, we are the first to investigate how to efficiently deploy services on the SEC nodes to realize robustness aware service coverage with constrained resources. Facing the challenges of spatial-temporal system dynamics and service coverage-robustness conflict, we propose a novel online service placement algorithm with a theoretical performance guarantee by leveraging Lyapunov optimization and Gibbs sampling. Extensive simulation results show that our algorithm can improve the service coverage by <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$4.3\times $ </tex-math></inline-formula> compared with the baseline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.