Abstract

Network slicing is one of the major solutions needed to meet the requirements of next generation cellular networks, under one common network infrastructure, in supporting multiple vertical services provided by mobile network operators. Network slicing makes one shared physical network infrastructure appear as multiple logically isolated virtual networks dedicated to different service types where each Network Slice (NS) benefits from on-demand allocated resources. Typically, the available resources distributed among NSs are correlated and one needs to allocate them judiciously in order to guarantee the service, MNO, and overall system qualities. In this paper, we consider a joint resource allocation strategy that weights the significance of the resources per a given NS by leveraging the correlation structure of different quality-of-service (QoS) requirements of the services. After defining the joint resource allocation problem including the correlation structure, we propose three novel scheduling mechanisms that allocate available network resources to the generated NSs based on different type of services with different QoS requirements. Performance of the proposed schedulers are then investigated through Monte-Carlo simulations and compared with each other as well as against a traditional max-min fairness algorithm benchmark. The results reveal that our schedulers, which have different complexities, outperform the benchmark traditional method in terms of service-based and overall satisfaction ratios, while achieving different fairness index levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.