Abstract

We reported that: (i) 3Y1tsF121 cells, a temperature-sensitive (ts) mutant of rat 3Y1 fibroblasts, are reversibly arrested either in the G1 or in the G2 phase, at the nonpermissive temperature, (ii) Cells retain the ability to resume proliferation at the permissive temperature after prolonged arrest in the G1 phase (for 5 days), whereas they lose it after prolonged arrest in the G2 phase (over 24 h). (iii) The G1 arrest is overcome at the nonpermissive temperature by the addition of fresh serum (H. Zaitsu and G. Kimura (1984) J. Cell. Physiol. 119, 82; (1985) J. Cell. Physiol. 124, 177). In the present study, the G2 arrest was overcome by exposing the cells to fresh serum, at the nonpermissive temperature. The G2 arrest occurred only at a higher cell density than that of the G1 arrest. The efficiency of the overcome was higher in the case of the G2 arrest than in case of the G1 arrest. When cells synchronized at the G1/S border by aphidicolin at the permissive temperature were released from the block, they divided in the absence of serum, at the permissive temperature. Even if they had passed through the previous G2 phase in a very high concentration of fresh serum at the permissive temperature, mitotic cells did not enter the S phase in the absence of serum, even at the permissive temperature. When the cells arrested in the G1 phase (not in G0) due to the ts defect were incubated in the absence of serum at the permissive temperature, only 34% entered the S phase and only 15% divided. These results suggest that (i) the ts defect in 3Y1tsF121 limiting cellular proliferation in both the G1 and the G2 phases is probably due to a single mutational event, and is a serum-requiring event. (ii) Preparation of the serum-requiring event which is required for the G2 traverse is completed in the G1 phase, under ordinary conditions. (iii) However, cells are able to fulfill the serum-requiring event in the G2 phase as well as in the G1 phase when the preparation is below the required level. (iv) The commitment to DNA synthesis is not necessarily a commitment to cell division. (v) Cells are arrested in the G1 phase more safely and more effectively than in the G2 phase, by the serum-related mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call