Abstract

BackgroundDespite the known associations between zinc levels and Alzheimer’s disease (AD) dementia and related cognitive impairment, the underlying neuropathological links remain poorly understood. We tested the hypothesis that serum zinc level is associated with cerebral beta-amyloid protein (Aβ) deposition. Additionally, we explored associations between serum zinc levels and other AD pathologies [i.e., tau deposition and AD-signature cerebral glucose metabolism (AD-CM)] and white matter hyperintensities (WMHs), which are measures of cerebrovascular injury.MethodsA total of 241 cognitively normal older adults between 55 and 90 years of age were enrolled. All the participants underwent comprehensive clinical assessments, serum zinc level measurement, and multimodal brain imaging, including Pittsburgh compound B-positron emission tomography (PET), AV-1451 PET, fluorodeoxyglucose (FDG)-PET, and magnetic resonance imaging. Zinc levels were stratified into three categories: < 80 μg/dL (low), 80 to 90 μg/dL (medium), and > 90 μg/dL (high).ResultsA low serum zinc level was significantly associated with increased Aβ retention. In addition, apolipoprotein E ε4 allele (APOE4) status moderated the association: the relationship between low zinc level and Aβ retention was significant only in APOE4 carriers. Although a low zinc level appeared to reduce AD-CM, the relationship became insignificant on sensitivity analysis including only individuals with no nutritional deficiency. The serum zinc level was associated with neither tau deposition nor the WMH volume.ConclusionsOur findings suggest that decreased serum zinc levels are associated with elevation of brain amyloid deposition. In terms of AD prevention, more attention needs to be paid to the role of zinc.

Highlights

  • Despite the known associations between zinc levels and Alzheimer’s disease (AD) dementia and related cognitive impairment, the underlying neuropathological links remain poorly understood

  • Despite the associations between serum zinc and clinical AD dementia as well as the associations between zinc and Aβ deposition observed in preclinical and postmortem studies, as of yet, no study has investigated the relationship between serum zinc levels and Aβ deposition or other AD-related brain pathologies in the living human brain

  • To explore the influence of age, sex, APOE4 positivity, vascular risk score (VRS), and the copper, calcium, and iron levels on the associations between serum zinc levels and the biomarkers that were significant in the analyses described above, the regression analyses were repeated but including two-way interaction terms between serum zinc levels and the biomarkers as additional independent variables

Read more

Summary

Introduction

Despite the known associations between zinc levels and Alzheimer’s disease (AD) dementia and related cognitive impairment, the underlying neuropathological links remain poorly understood. We tested the hypothesis that serum zinc level is associated with cerebral beta-amyloid protein (Aβ) deposition. We explored associations between serum zinc levels and other AD pathologies [i.e., tau deposition and AD-signature cerebral glucose metabolism (AD-CM)] and white matter hyperintensities (WMHs), which are measures of cerebrovas‐ cular injury. Preclinical studies using an AD mouse model revealed that brain zinc bound to beta-amyloid protein (Aβ) plaques. Many human studies have found that serum zinc levels were decreased in AD dementia compared to healthy controls [7,8,9,10,11]. Despite the associations between serum zinc and clinical AD dementia as well as the associations between zinc and Aβ deposition observed in preclinical and postmortem studies, as of yet, no study has investigated the relationship between serum zinc levels and Aβ deposition or other AD-related brain pathologies in the living human brain

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call