Abstract

Myocardial energy deprivation plays a causal role in the development of heart failure. A cardiac protection blend (CPB) of nutrients including medium chain triglycerides, fish oil and other key nutrients was developed to slow the progression of canine myxomatous mitral valve disease (MMVD). A six-month dietary intervention demonstrated efficacy of CPB in slowing MMVD progression. Untargeted metabolomic analysis of serum from these dogs identified 102 differential metabolites (adjusted P < 0.05). The ratios of omega-6 to omega-3 fatty acid (FA) changed from 2.41 and 1.46 in control and CPB groups at baseline to 4.30 and 0.46 at 6 months respectively. A 2.7-fold increase of α-aminobutyrate, a myocardial modulator of glutathione homeostasis, was found in CPB dogs compared to 1.3-fold increase in control dogs. Arginine and citrulline, precursors of nitric oxide biosynthesis, were both increased 2-fold; caprate, a medium chain FA, was increased 3-fold; and deoxycarnitine, precursor of carnitine biosynthesis, was increased 2.5-fold in CPB dogs. Margarate and methylpalmitate decreased in response to CPB, a potential benefit in MMVD dogs as positive correlations were found between changes in both these FAs and left atrial diameter (r = 0.69, r = 0.87 respectively, adjusted P < 0.05). Sphingomyelins with very long chain saturated FAs associated with decreased risk of heart failure in humans were increased in MMVD dogs fed the CPB diet. Our data supports the hypothesis that CPB improves FA utilization and energetics, reduces oxidative stress and inflammation in MMVD dogs. More studies are needed to understand the roles of specific metabolites in MMVD.

Highlights

  • The adult mammalian heart requires a large quantity of ATP produced through mitochondrial fatty acid (FA) oxidation in order to support its normal contractile work [1]

  • Principal component analysis (PCA) performed to evaluate changes over time found no change in contents were similar between diets (CON) dogs but significant time effect along PC1 was observed in cardiac protection blend (CPB) dogs ((P = 0.74, P = 3.4e-04 respectively, S1 Fig)

  • PCA analysis showed a clear clustering between diet groups after 6 months while no clustering was observed at baseline

Read more

Summary

Introduction

The adult mammalian heart requires a large quantity of ATP produced through mitochondrial fatty acid (FA) oxidation in order to support its normal contractile work [1]. Perturbations in myocardial energy metabolism play a key role in the development of heart failure [2,3,4]. A shift from long chain fatty acids (LCFAs) as the main energy source to other energy substrates has been documented in the failing heart in both humans and animals [5,6,7]. Chronic myxomatous mitral valve disease (MMVD) is the most common naturally-occurring heart disease. Diet effects on metabolome in canine mitral valve disease manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call