Abstract
Objectives The prevalence of generalised anxiety disorder (GAD) is high. However, the underlying mechanisms remain elusive. Proteomics techniques can be employed to assess the pathological mechanisms involved in GAD. Methods Twenty-two drug-naive GAD patients were recruited, their serum samples were used for protein quantification and identified using Tandem Mass Tag and Multiple Reaction Monitoring (MRM). Machine learning models were employed to construct predictive models for disease occurrence by using clinical scores and target proteins as input variables. Results A total of 991 proteins were differentially expressed between GAD and healthy participants. Gene Ontology analysis revealed that these proteins were significantly associated with stress response and biological regulation, suggesting a significant implication in anxiety disorders. MRM validation revealed evident disparities in 12 specific proteins. The machine learning model found a set of five proteins accurately predicting the occurrence of the disease at a rate of 87.5%, such as alpha 1B-glycoprotein, complement component 4 A, transferrin, V3-3, and defensin alpha 1. These proteins had a functional association with immune inflammation. Conclusions The development of generalised anxiety disorder might be closely linked to the immune inflammatory stress response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.