Abstract

This study investigated the 1-year longitudinal effect of professional training in adolescent runners on redox balance during intense endurance exercise. Changes in selected serum oxidant and antioxidant status in response to a 21-km running time trial in 10 runners (15.5 ± 1.3 years) undergoing professional training were evaluated twice in 12 months (pre- and post-evaluation). Venous blood samples were collected immediately before and 4-h following the 21-km run for analysis of serum concentrations of thiobarbituric acid-reactive substances (TBARS), xanthine oxidase (XO), catalase (CAT), reduced glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC). In pre-evaluation trial, serum TBARS and SOD decreased after the 21-km run (p < 0.05) while XO, GSH, CAT and TAOC were unchanged. In post-evaluation trial, serum TBARS and SOD decreased, whereas XO and CAT increased post-exercise (p < 0.05). Furthermore, pre-exercise serum T-AOC, post-exercise serum XO, CAT, T-AOC (p < 0.05), and GSH (p = 0.057) appeared to be higher than the corresponding pre-evaluation values. The current findings suggest that a professional training regime in adolescent runners is not likely to jeopardize the development of their antioxidant defense. However, uncertainties in the maintenance of redox balance in runners facing increased exercise-induced oxidative stress as a consequence of training-induced enhancement of exercise capacity await further elucidation.

Highlights

  • It is well established that endurance exercise is accompanied by an increaV 2, which, in turn, may trigger reactive oxygen species (ROS) production [1]

  • The aim of this study was to investigate the longitudinal effect of professional training in adolescent runners on their antioxidant defense against oxidative stress elicited during intense endurance exercise, by comparing two identical evaluations of serum redox balance in response to a

  • To the best of our knowledge, this is the first study to assess whether or not the endurance training of adolescent athletes performed according to a professional profile interferes with development of their antioxidant capacity for counteracting the burst of ROS generated during intense endurance exercise

Read more

Summary

Introduction

It is well established that endurance exercise is accompanied by an increaV 2, which, in turn, may trigger reactive oxygen species (ROS) production [1]. ROS have a prominent role in cell damage, their signaling function is important in mediating various physiological responses or adaptations to exercise, including glycogen repletion, myokine production, and up-regulation of antioxidant defense mechanisms [2,3,4]. These positive effects on cells are the result of a balance between ROS production and antioxidant defense. Long-term exposure to oxidative stress results in protein and lipid oxidation, DNA damage, and apoptosis These unfavorable changes are associated with cell aging, and participate in certain degenerative pathologies, such as cardiovascular and metabolic disorders [1,5].

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.