Abstract

Trophic deprivation-mediated neuronal death is important during development, after acute brain or nerve trauma, and in neurodegeneration. Serum deprivation (SD) approximates trophic deprivation in vitro, and an in vivo model is provided by neuronal death in the mouse dorsal lateral geniculate nucleus (LGNd) after ablation of the visual cortex (VCA). Oxidant-induced intracellular Zn(2+) release ([Zn(2+) ](i) ) from metallothionein-3 (MT-III), mitochondria or 'protein Zn(2+) ', was implicated in trophic deprivation neurotoxicity. We have previously shown that neurotoxicity of extracellular Zn(2+) required entry, increased [Zn(2+) ](i) , and reduction of NAD(+) and ATP levels causing inhibition of glycolysis and cellular metabolism. Exogenous NAD(+) and sirtuin inhibition attenuated Zn(2+) neurotoxicity. Here we show that: (1) Zn(2+) is released intracellularly after oxidant and SD injuries, and that sensitivity to these injuries is proportional to neuronal Zn(2+) content; (2) NAD(+) loss is involved - restoration of NAD(+) using exogenous NAD(+) , pyruvate or nicotinamide attenuated these injuries, and potentiation of NAD(+) loss potentiated injury; (3) neurons from genetically modified mouse strains which reduce intracellular Zn(2+) content (MT-III knockout), reduce NAD(+) catabolism (PARP-1 knockout) or increase expression of an NAD(+) synthetic enzyme (Wld(s) ) each had attenuated SD and oxidant neurotoxicities; (4) sirtuin inhibitors attenuated and sirtuin activators potentiated these neurotoxicities; (5) visual cortex ablation (VCA) induces Zn(2+) staining and death only in ipsilateral LGNd neurons, and a 1 mg/kg Zn(2+) diet attenuated injury; and finally (6) NAD(+) synthesis and levels are involved given that LGNd neuronal death after VCA was dramatically reduced in Wld(s) animals, and by intraperitoneal pyruvate or nicotinamide. Zn(2+) toxicity is involved in serum and trophic deprivation-induced neuronal death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.