Abstract

Axonal white matter injury is believed to be a major determinant of adverse outcomes following traumatic brain injury (TBI). We hypothesized that measurement of neurofilament light protein (NF-L), a protein found in long white-matter axons, in blood samples, may serve as a suitable biomarker for neuronal damage in TBI patients. To test our hypotheses, we designed a study in two parts: i) we developed an immunoassay based on Single molecule array technology for quantification of NF-L in blood, and ii) in a proof-of-concept study, we tested our newly developed method on serial serum samples from severe TBI (sTBI) patients (n = 72) and controls (n = 35). We also compared the diagnostic and prognostic utility of NF-L with the established blood biomarker S100B. NF-L levels were markedly increased in sTBI patients compared with controls. NF-L at admission yielded an AUC of 0.99 to detect TBI versus controls (AUC 0.96 for S100B), and increased to 1.00 at day 12 (0.65 for S100B). Importantly, initial NF-L levels predicted poor 12-month clinical outcome. In contrast, S100B was not related to outcome. Taken together, our data suggests that measurement of serum NF-L may be useful to assess the severity of neuronal injury following sTBI.

Highlights

  • Axonal protein in plasma using Single molecule array (Simoa) technology, which is up to 1000-fold more sensitive than conventional ELISA, and showed that tau measured 1 hour after concussion were significantly elevated in concussed athletes[12]

  • To test our specific hypotheses, we designed a study in 2 parts: i) we developed an ultrasensitive ELISA based on Simoa technology[18], for quantification of NF-L in serum, and ii) in a proof-of-concept study, we applied our newly developed assay on serial blood samples of severe TBI (sTBI) patients (n = 72), as well as neurologically healthy controls (n = 35)

  • We found increased serum levels of both NF-L and S100B in patients with sTBI compared with controls, but the dynamics were different; whilst NF-L concentrations were increased at admission to NICU, and continued to rise over the first 12 days post-injury, S100B concentrations fell over time after an initial peak the first day after trauma

Read more

Summary

Introduction

Axonal protein in plasma using Single molecule array (Simoa) technology, which is up to 1000-fold more sensitive than conventional ELISA, and showed that tau measured 1 hour after concussion were significantly elevated in concussed athletes[12]. We assessed the univariate relationship between early (24 hours) NF-L levels and clinical outcome, and found higher levels of NF-L in patients with lower GOS score at 12 months after injury (r =−​0.34, p = 0.010) (Fig. 4b).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.