Abstract

BackgroundOverproduction of reactive oxygen species (ROS) and impaired iron metabolism are considered to be possible factors in the pathogenesis of Multiple sclerosis (MS). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are the primary sources of regulated ROS production. The NADPH oxidase (NOX) family consists of seven catalytic homologues, NOX1–5 and two dual oxidases. NOX1 and NOX5 are associated with endothelial dysfunction and inflammation but NOX4 has a protective effect on vascular function. The aims of this study were to investigate the status of NOX1, NOX4 and NOX5 and its relationship with serum iron metabolism biomarkers in relapsing-remitting MS patients. MethodsThe study included 53 RRMS patients and 45 control subjects. Serum NOX1,4,5, ferritin, iron, unbound-iron binding capacity, C-reactive protein (CRP), white blood count (WBC) and erythrocyte sedimentation rate (ESR) levels were measured in all the study subjects. ResultsHigher serum NOX5 (p < 0.0001), CRP (p = 0.014), ferritin (p = 0.040) and lower serum NOX4 (p < 0.0001) and iron (p = 0.013) concentrations were found in the patients than in controls. No correlation was found between NOXs, CRP, WBC, ESR and iron metabolism biomarkers in patients. ConclusionOur data suggest that increased NOX5 expression and decreased levels of NOX4 might be related with oxidative stress related vascular changes in MS patients. These findings provide future opportunities to combat MS with separately target individual NOX isoforms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call