Abstract
We evaluated whether lysyl oxidase-like 2 (LOXL2), which promotes cross-linking of collagen in pathological stroma, was detectable in serum from idiopathic pulmonary fibrosis (IPF) patients, and assessed its relationship with IPF disease progression. Patients from the ARTEMIS-IPF (n=69) and the Genomic and Proteomic Analysis of Disease Progression in IPF (GAP) (n=104) studies were analysed. Baseline serum LOXL2 (sLOXL2) levels were compared with baseline clinical and physiological surrogates of disease severity, and the association with IPF disease progression was assessed using a classification and regression tree (CART) method. sLOXL2 correlated weakly with forced vital capacity and carbon monoxide diffusion capacity (r -0.24-0.05) in both cohorts. CART-determined thresholds were similar: ARTEMIS-IPF 800 pg·mL(-1) and GAP 700 pg·mL(-1). In ARTEMIS-IPF, higher sLOXL2 (>800 pg·mL(-1)) was associated with increased risk for disease progression (hazard ratio (HR) 5.41, 95% CI 1.65-17.73). Among GAP subjects with baseline spirometric data (n=70), higher sLOXL2 levels (>700 pg·mL(-1)) were associated with more disease progression events (HR 1.78, 95% CI 1.01-3.11). Among all GAP subjects, higher sLOXL2 levels were associated with increased risk for mortality (HR 2.28, 95% CI 1.18-4.38). These results suggest that higher sLOXL2 levels are associated with increased risk for IPF disease progression. However, due to multiple limitations, these results require validation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.