Abstract

BackgroundB-cell activating factor of the tumour necrosis factor family (BAFF) plays a role in autoantibody production and is elevated in dermatomyositis (DM) and anti-Jo-1-positive polymyositis (PM). We investigated the inter-relationships between serum levels of BAFF, anti-Jo-1 autoantibodies, and disease activity.MethodsSerum levels of BAFF and anti-Jo-1 antibodies measured by enzyme-linked immunosorbent assay (ELISA) were compared to levels of myoglobin, creatine kinase (CK), aminotransferases (alanine (ALT) and aspartate (AST)), C-reactive protein (CRP), and disease activity assessed by the Myositis Disease Activity Assessment Tool in 63 anti-Jo-1 antibody-positive DM/PM patients. Serial serum samples collected at 2 (46 cases) and 3–5 time points (23 cases) were included. Relationships between BAFF, anti-Jo-1, disease activity, CRP, and their longitudinal changes were evaluated using correlation analysis, multiple regression (MR), path analysis (PA), and hierarchical linear models (HLM).ResultsCross-sectional assessment demonstrated significant correlations between the levels of BAFF and anti-Jo-1 antibodies which were associated with levels of CK, myoglobin, AST, and CRP, as well as multivariate associations between BAFF, anti-Jo-1 antibodies, and CK levels. PA revealed direct effects of anti-Jo-1 antibodies on CK (β = 0.41) and both direct (β = 0.42) and indirect (through anti-Jo-1 antibodies; β = 0.17) effects of BAFF on CK. Changes in levels of both BAFF and anti-Jo-1 between two time points (Δ) were associated with Δmyoglobin and Δaminotransferases and changes of BAFF correlated with ΔCK, Δcutaneous, Δmuscle, Δglobal, and Δskeletal disease activities.The longitudinal analysis showed a high intra-individual variability of serum levels of BAFF over time (97%) which could predict 79% of the variance in anti-Jo-1 levels. The anti-Jo-1 variability was explained by inter-individual differences (68%). The close longitudinal relationship between levels of BAFF, anti-Jo-1, and disease activity was supported by high proportions of their variance explained with serum levels of CK and CRP or pulmonary and muscle activities.ConclusionOur findings of associations between levels of BAFF and anti-Jo-1 antibodies in serum and myositis activity suggest a role of this cytokine in disease-specific autoantibody production as part of disease mechanisms, and support BAFF as a potential target for intervention in anti-Jo-1-positive myositis patients.

Highlights

  • B-cell activating factor of the tumour necrosis factor family (BAFF) plays a role in autoantibody production and is elevated in dermatomyositis (DM) and anti-Jo-1-positive polymyositis (PM)

  • In summary, levels of anti-Jo-1 in serum are proposed as a biomarker of disease activity in patients with anti-Jo-1-positive myositis

  • Our study demonstrated that serum levels of BAFF correlate with serum levels of anti-Jo-1 antibodies

Read more

Summary

Introduction

B-cell activating factor of the tumour necrosis factor family (BAFF) plays a role in autoantibody production and is elevated in dermatomyositis (DM) and anti-Jo-1-positive polymyositis (PM). The linear regression analysis of variance (ANOVA) model confirmed that anti-Jo-1 antibodies and ILD are the main influencing factors for levels of BAFF, in PM patients [17] Based on this observation and on the previously reported correlations between serum levels of anti-Jo-1 antibodies and disease activity [18], we aimed to study associations between BAFF and anti-Jo-1 antibody levels in longitudinally collected serum samples and their relation to standardised clinical measures and laboratory markers of disease activity in patients with DM/PM, with a focus on early cases and the subgroup defined by the presence of ILD. We included analysis of associations with serum levels of CRP

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call