Abstract

Obesity is considered a major risk factor for the development and progression of knee osteoarthritis (OA). Apart from the mechanical effect of obesity via increase in mechanical overload of weight-bearing joints, an association with hand OA has been observed. There has been increasing interest in the role of adipokines in the pathogenesis of OA in the recent years. It has been suggested that their systemic effects link obesity and OA. In this regard, the aim of the current study was measurement and analysis of serum levels of leptin and resistin in patients with knee OA with different body mass index (BMI). Seventy-three patients with primary symptomatic knee OA at the age between 35 and 87 years (mean age 66 years) were included in the study (67 women and 6 men). The patients were from 2nd to 4th radiographic stage according to Kellgren–Lawrence scale. 43 patients were with concomitant obesity (BMI ≥ 30 kg/m2, mean values 38.34 ± 8.20) and 30 patients with BMI < 30 kg/m2 (mean values 25.07 ± 2.95). Eleven individuals with different BMIs, including cases with obesity but without radiographic knee OA, were examined as a control group. Serum levels of leptin and resistin were measured via ELISA method. In patients with knee OA and BMI ≥ 30 kg/m2, serum levels of leptin (39.546 ± 12.918 ng/mL) were significantly higher as compared with healthy individuals (15.832 ± 16.531 ng/mL, p < 0.05) and the patients with low BMI (p < 0.05). In patients with BMI < 30 kg/m2 the levels of leptin (13.010 ± 10.94 ng/mL) did not differ significantly from the respective values in the control group (p = 0.48). Serum levels of resistin were also higher in knee OA patients in comparison with healthy controls, but the difference was statistically significant only for patients with high BMI (2.452 ± 1.002 ng/mL in the group with BMI ≥ 30 kg/m2; 2.401 ± 1.441 ng/mL in patients with BMI < 30 kg/m2; 1.610 ± 1.001 ng/mL in the control group, p < 0.05). A correlation was found between the serum levels of leptin and radiographic stage of OA, i.e., higher leptin levels were present in the more advanced 3rd and 4th radiographic stage, while for resistin a correlation was observed in the patient subgroup with BMI < 30 kg/m2. Serum leptin and resistin levels and clinical characteristics were analyzed in patients with different clinical forms of OA. Novel clinical correlations have been found in the current study in patients with isolated knee OA vs. cases with presence of other disease localizations. It has been observed that patients with isolated knee OA were significantly younger and had higher BMI as compared with cases in whom OA is combined with other localizations i.e., spondyloarthritis ± presence of hip OA and with generalized OA. This supports the hypothesis that presence of obesity promotes earlier development of knee OA as an isolated localization of the disease in younger patients before appearance of osteoarthritic changes at other sites. The levels of leptin and resistin in isolated knee OA were also higher. Serum levels of leptin and resistin in combination with patients’ clinical characteristics suggest existence of different clinical and laboratory profile through which more precise definition of metabolic phenotype of knee OA would be possible. Considering the fact that obesity is a modifiable risk factor that has an impact on progression of knee OA, different approaches to influence obesity may offer potential for future disease-modifying therapeutic interventions.

Highlights

  • The knee is the most common localization of osteoarthritis (OA)

  • In patients with knee OA and body mass index (BMI) ≥ 30 kg/m2 serum levels of leptin (39.546 ± 12.918 ng/mL) were significantly higher as compared with the control group, which was comprised of individuals with different BMIs, including cases with obesity but without OA (15.832 ± 16.531 ng/mL, p < 0.05) (Figure 1A)

  • Serum levels of resistin were higher in knee OA patients in comparison with controls and the difference reached statistical significance in patients with high BMI (2.452 ± 1.002 ng/mL in the group with BMI ≥ 30 kg/m2; 2.401 ± 1.441 ng/mL in patients with BMI < 30 kg/m2; 1.610 ± 1.001 ng/mL in the control group, p < 0.05) (Figure 1B)

Read more

Summary

Introduction

The knee is the most common localization of osteoarthritis (OA). Obesity is considered a major risk factor for its development and progression. The existence of different phenotypes of knee OA has been suggested. The high prevalence of different components of the metabolic syndrome in a proportion of patients with knee OA, i.e., obesity, diabetes, hypertension and dyslipidemia, as well as the association with some serum biomarkers, i.e., leptin, higher high-sensitivity CRP suggest the existence of a metabolic phenotype of knee OA [2]. Adipokines represent mediators derived from dysfunctional adipose tissue, endothelial, immune cells, fibroblasts, and other cell types. Apart from their well-known role to regulate appetite, the feeling of satiety, fat distribution, insulin secretion, they take a part in the regulation of endothelial function, inflammation, blood pressure, hemostasis. It has been observed that adipokines, such as leptin, adiponectin, visfatin and resistin, stimulate chondrolysis and inflammation [5,6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call