Abstract

To study the association of serum IFNα2 levels measured by ultrasensitive single-molecule array (Simoa) and the IFN-I gene signature (IGS) with disease activity and determine whether these assays can mark disease activity states in a longitudinal cohort of childhood-onset SLE (cSLE) patients. Serum IFNα2 levels were measured in 338 samples from 48 cSLE patients and 67 healthy controls using an IFNα Simoa assay. Five-gene IGS was measured by RT-PCR in paired whole blood samples. Disease activity was measured by clinical SELENA-SLEDAI and BILAG-2004. Low disease activity was defined by Low Lupus Disease Activity State (LLDAS) and flares were characterized by SELENA-SLEDAI flare index. Analysis was performed using linear mixed models. A clear positive correlation was present between serum IFNα2 levels and the IGS (r = 0.78, P < 0.0001). Serum IFNα2 levels and IGS showed the same significant negative trend in the first 3 years after diagnosis. In this timeframe, mean baseline serum IFNα2 levels decreased by 55.1% (Δ 201 fg/ml, P < 0.001) to a mean value of 164 fg/ml, which was below the calculated threshold of 219.4 fg/ml that discriminated between patients and healthy controls. In the linear mixed model, serum IFNα2 levels were significantly associated with both cSELENA-SLEDAI and BILAG-2004, while the IGS did not show this association. Both IFN-I assays were able to characterize LLDAS and disease flare in receiver operating characteristic analysis. Serum IFNα2 levels measured by Simoa technology are associated with disease activity scores and characterize disease activity states in cSLE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call