Abstract

BackgroundAs an alternative biomarker of intrahepatic covalently closed circular DNA (cccDNA) transcriptional activity, hepatitis B virus (HBV) RNA may evolve during long-lasting virus-host interactions during chronic hepatitis B viral infection. The distribution pattern of serum HBV RNA levels in the natural course of chronic HBV infection remains unclear. The aim of this study was to evaluate the levels of HBV RNA during the natural course of CHB and the role in distinguishing the natural history of HBV infection.MethodsA total of 291 treatment-naïve chronic HBV carriers were enrolled. Based on the clinical, biochemical, serological, and histological data as well as HBV DNA levels, patients were classified into the following four categories: the immune-tolerant phase (IT,n = 35), HBeAg-positive immune-active phase (EPIA,n = 121), inactive chronic hepatitis B(ICH,n = 77) and HBeAg-negative immune reactive hepatitis (ENH,n = 58). The parameters and distribution patterns of serum HBV RNA were evaluated in relation to viral replication status, immune phase, disease category and Child-Pugh class. The relationships between serum HBV RNA and other serum hepatitis B viral markers were also analyzed.ResultsSerum HBV RNA levels were significantly lower in the HBeAg-negative patients compared to those in the HBeAg-positive patients, with the lowest levels seen in inactive carriers. In HBeAg-negative patients, serum HBV RNA levels increased if there is reactivation to active hepatitis and showed obvious superiority for the combination of serum HBV DNA (cutoff>3.39 Log copies/mL) and HBsAg (cutoff>2.74 Log IU/mL) in discriminating between ‘HBeAg-negative immune reactive’ phase and inactive chronic hepatitis B phases of HBeAg-negative chronic HBV infection. Serum HBV RNA levels were positively correlated with serum HBV DNA and HBsAg levels in all chronic HBV-infected patients. A stratified analysis revealed that a correlation between serum HBV RNA and HBV DNA or HBsAg was present in HBeAg-positive patients; however, in HBeAg-negative patients, serum HBV RNA was positively correlated with HBV DNA only.ConclusionDuring the natural course of chronic HBV infection, serum HBV RNA levels vary. Serum HBV RNA can act as a biomarker to predict the natural history of disease in chronic hepatitis B patients. In treatment-naïve HBeAg-negative chronic HBV-infected individuals, serum HBV RNA shows superiority in differentiating the ‘HBeAg-negative reactive’ phase.

Highlights

  • As an alternative biomarker of intrahepatic covalently closed circular DNA transcriptional activity, hepatitis B virus (HBV) RNA may evolve during long-lasting virus-host interactions during chronic hepatitis B viral infection

  • The first line antiviral agents such as nucleos(t) ide analogues (NAs) can efficiently inhibit HBV replication and control disease progression in almost all patients, these drugs rarely lead to elimination of chronic HBV infection completely due to their little effect on covalently closed circular DNA(cccDNA),which is believed to be the main cause of viral persistence [3,4,5,6]

  • The Hepatitis B e antigen (HBeAg)-positive Chronic hepatitis B (CHB) group had a higher median(IQR) alanineamino transferase (ALT) of 88.5(42.5261.0)IU/L,Aspartate amino transferase (AST) of 58.5(31,116)IU/L, HBV DNA level of 7.65(5.87,8.43) log copies/mL and quantitative HBsAg (qHBsAg) level of 3.92 (3.27,4.56) log IU/mL compared with the HBeAg-negative patients with ALT [36(20.5100.5) IU/L], AST[27 (21,56) IU/L], HBV DNA[3.16 (2.74,5.20)log copies/mL] and qHBsAg [2.98 (2.38,3.58) log IU/mL]

Read more

Summary

Introduction

As an alternative biomarker of intrahepatic covalently closed circular DNA (cccDNA) transcriptional activity, hepatitis B virus (HBV) RNA may evolve during long-lasting virus-host interactions during chronic hepatitis B viral infection. The first line antiviral agents such as nucleos(t) ide analogues (NAs) can efficiently inhibit HBV replication and control disease progression in almost all patients, these drugs rarely lead to elimination of chronic HBV infection completely due to their little effect on covalently closed circular DNA(cccDNA),which is believed to be the main cause of viral persistence [3,4,5,6]. As the main cause of HBV persistence and drug resistance, monitoring of intrahepatic cccDNA level is of great significance for evaluating antiviral therapy efficacy and estimating treatment endpoint [8]. Surrogate markers for intrahepatic cccDNA transcriptional activity are required

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call