Abstract

SUMMARY Serum glucose and immunoreactive insulin concentrations were monitored after topical administration of an insulin-containing ophthalmic solution in 20 clinically normal cats. Three ophthalmic surface-acting agents, benzalkonium chloride, dimethyl sulfoxide, and proparacaine hydrochloride, were evaluated individually for their effectiveness in enhancing absorption of topically applied insulin. The ophthalmic effects of insulin-containing ophthalmic preparations were assessed by complete ophthalmic examination before and at the conclusion of each test period. Withholding of food overnight (12 hours) preceded each topical application of insulin-containing ophthalmic solution (12.25 to 26.4 U/cat), either alone or in combination with surface-acting agents, after which blood samples were drawn serially from an indwelling iv catheter over a period of 8 hours. Baseline serum insulin concentration, after food was withheld for 12 hours, in nonstressed cats was 6.0 μU/ml (geometric mean), and an exponentiation of the logarithmic quantity (mean ± sd) yielded values of 1.5 to 23.0 μU/ml. All ophthalmic solutions tested failed to significantly lower serum glucose concentration or increase serum insulin concentration. Solutions used did not induce deleterious effect on ocular structures. Results indicate that topical administration of insulin-containing ophthalmic solution, either alone at the concentrations used or in combination with surfaceacting agents, did not result in effective absorption of insulin across the conjunctival and lacrimal nasal mucosa in biologically relevent quantities. Thus, this route of insulin administration, under these specific conditions, is not an effective alternative or adjunct to SC administration of insulin for treatment of cats with insulin-dependent diabetes mellitus or severe noninsulin-dependent diabetes mellitus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.