Abstract

Background A reliable noninvasive biomarker is not yet available for endometriosis diagnosis. Novel biomarkers for the diagnosis of endometriosis are urgently needed. The molecular constituents of exosomes, especially exosomal microRNAs (miRNAs), have considerable potential as novel biomarkers for clinical diagnosis. This study is aimed at exploring aberrant exosomal miRNA profiles by using miRNA microarray and at providing more accurate molecular biomarkers of endometriosis. Methods Exosomes were isolated from the serum of patients with endometriosis and negative controls and identified by electron microscopy, nanoparticle tracking analysis, and Western blot. Exosomal miRNAs were profiled by miRNA microarrays. The expression of selective serum exosomal miRNA was validated by qRT-PCR. Receiver operating characteristic (ROC) curves were established to explore the diagnostic value of selective miRNAs. Finally, GO annotation and KEGG pathway enrichment analyses were used to display possible functions associated with the two miRNAs. Results A total of 24 miRNAs showed differential levels of enrichment with P < 0.05 and |log2 fold change| > 1 by miRNA microarrays. Among the six selective miRNAs (i.e., miR-134-5p, miR-197-5p, miR-22-3p, miR-320a, miR-494-3p, and miR-939-5p), qRT-PCR analysis revealed that miR-22-3p and miR-320a were significantly upregulated in serum exosomes from patients with endometriosis compared with negative individuals. ROC curve revealed that the serum exosomal miR-22-3p and miR-320a yielded the area under the curve values of 0.855 and 0.827, respectively. Conclusion Our results demonstrated that exosomal miR-22-3p and miR-320a were significantly increased in the sera of patients with endometriosis. The two miRNAs may be useful potential biomarkers for endometriosis diagnosis.

Highlights

  • Endometriosis, defined as the existence of endometrial tissue outside the uterine cavity, affects approximately 10%–15% of women of reproductive age [1]

  • Nanoparticle calculations on the basis of the Nanoparticle Tracking Analysis (NTA) experiments revealed that the concentration of exosomes in solution was 3:7 × 108 particles/ml

  • These results indicated that exosomal miRNAs can be found in circulation in patients with endometriosis, and their expression can be used to distinguish endometriosis patients from negative individuals

Read more

Summary

Introduction

Endometriosis, defined as the existence of endometrial tissue outside the uterine cavity, affects approximately 10%–15% of women of reproductive age [1]. Despite the high prevalence of endometriosis, the diagnosis of this disease is often delayed because of the diversity of symptoms and the lack of sensitive biomarkers in the early phase [3]. A reliable noninvasive biomarker is not yet available for endometriosis diagnosis. The molecular constituents of exosomes, especially exosomal microRNAs (miRNAs), have considerable potential as novel biomarkers for clinical diagnosis. This study is aimed at exploring aberrant exosomal miRNA profiles by using miRNA microarray and at providing more accurate molecular biomarkers of endometriosis. Among the six selective miRNAs (i.e., miR-134-5p, miR-197-5p, miR-22-3p, miR-320a, miR-494-3p, and miR-939-5p), qRT-PCR analysis revealed that miR-22-3p and miR-320a were significantly upregulated in serum exosomes from patients with endometriosis compared with negative individuals. Our results demonstrated that exosomal miR-22-3p and miR-320a were significantly increased in the sera of patients with endometriosis. The two miRNAs may be useful potential biomarkers for endometriosis diagnosis

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.