Abstract

Background:Pulmonary tuberculosis (PTB) is a chronic granulomatous disease caused by Mycobacterium tuberculosis. The present study determined the serum human enolase-2 (ENO-2), high-sensitive C-reactive protein (hs-CRP), and serum cholesterol levels as biological marker of disease activity and treatment response in smear-positive drug-naïve PTB.Materials and Methods:This case–control study was done in the Department of Medicine, Liaquat University of Medical and Health Sciences (LUMHS), Jamshoro/Hyderabad, Sindh, from January 2015 to April 2016. Thirty-five sputum smear-positive drug-naïve PTB patients and thirty controls were studied. MTB culture and drug sensitivity were performed at the Diagnostic and Research Laboratory of LUMHS. Serum ENO-2, hs-CRP, and serum cholesterol were estimated at baseline, 3rd and 6th month of antituberculosis (TB) therapy.Results:Serum ENO-2 and hs-CRP were found raised in PTB compared to controls and showed decrease of 13% and 21.55%, 19.6% and 31.5% at 3rd and 6th month, respectively (P = 0.0001). Serum ENO-2 revealed positive correlation with hs-CRP (r = 0.734, P = 0.0001), and serum cholesterol revealed negative correlation with ENO-2 and hs-CRP (r = −0.509, P = 0.0001) and (r = −0.566, P = 0.0001), respectively.Conclusion:The present study reports the baseline ENO-2 and hs-CRP were raised, and serum cholesterol was low in smear-positive PTB patients and the ENO-2 and hs-CRP were reduced by anti-TB drug therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.