Abstract
BackgroundThe most threatening metastases in breast cancer are brain metastases, which correlate with a very poor overall survival, but also a limited quality of life. A key event for the metastatic progression of breast cancer into the brain is the migration of cancer cells across the blood–brain barrier (BBB).MethodsWe adapted and validated the CD34+ cells-derived human in vitro BBB model (brain-like endothelial cells, BLECs) to analyse the effects of patient serum on BBB properties. We collected serum samples from healthy donors, breast cancer patients with primary cancer, and breast cancer patients with, bone, visceral or cerebral metastases. We analysed cytokine levels in these sera utilizing immunoassays and correlated them with clinical data. We used paracellular permeability measurements, immunofluorescence staining, Western blot and mRNA analysis to examine the effects of patient sera on the properties of BBB in vitro.ResultsThe BLECs cultured together with brain pericytes in transwells developed a tight monolayer with a correct localization of claudin-5 at the tight junctions (TJ). Several BBB marker proteins such as the TJ proteins claudin-5 and occludin, the glucose transporter GLUT-1 or the efflux pumps PG-P and BCRP were upregulated in these cultures. This was accompanied by a reduced paracellular permeability for fluorescein (400 Da). We then used this model for the treatment with the patient sera. Only the sera of breast cancer patients with cerebral metastases had significantly increased levels of the cytokines fractalkine (CX3CL1) and BCA-1 (CXCL13). The increased levels of fractalkine were associated with the estrogen/progesterone receptor status of the tumour. The treatment of BLECs with these sera selectively increased the expression of CXCL13 and TJ protein occludin. In addition, the permeability of fluorescein was increased after serum treatment.ConclusionWe demonstrate that the CD34+ cell-derived human in vitro BBB model can be used as a tool to study the molecular mechanisms underlying cerebrovascular pathologies. We showed that serum from patients with cerebral metastases may affect the integrity of the BBB in vitro, associated with elevated concentrations of specific cytokines such as CX3CL1 and CXCL13.
Highlights
The blood–brain barrier (BBB) is a natural barrier that specializes in protecting the brain from harmful substances, including anti-tumour drugs
Validation of human in vitro BBB model After 6 days co-culture with brain pericytes expression of tight junctions (TJ) proteins, occludin and claudin-5 was induced in brain-like endothelial cells (BLECs) (Fig. 1a)
BLECs in co-culture with pericytes formed a monolayer with the correct localization of claudin-5 at the TJs
Summary
The blood–brain barrier (BBB) is a natural barrier that specializes in protecting the brain from harmful substances, including anti-tumour drugs. Induced pluripotent stem cells (iPSCs)-derived brain-like endothelial cells (BLECs) can be obtained by specific differentiation protocols [4,5,6,7,8,9,10,11] Another published method is the use of umbilical cord blood-derived hematopoietic stem cells for differentiation into endothelial cells, followed by the induction of BBB properties by co-culture with brain pericytes [12,13,14]. These advances in in vitro BBB modelling contribute to advances in the understanding of CNS disorders, such as brain metastases of breast cancer [15,16,17]. We used paracellular permeability measurements, immunofluorescence staining, Western blot and mRNA analysis to examine the effects of patient sera on the properties of BBB in vitro
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.